Automatic disease diagnosis using optimised weightless neural networks for low‐power wearable devices
نویسندگان
چکیده
منابع مشابه
Automatic disease diagnosis using optimised weightless neural networks for low-power wearable devices
Low-power wearable devices for disease diagnosis are used at anytime and anywhere. These are non-invasive and pain-free for the better quality of life. However, these devices are resource constrained in terms of memory and processing capability. Memory constraint allows these devices to store a limited number of patterns and processing constraint provides delayed response. It is a challenging t...
متن کاملrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Vector space weightless neural networks
By embedding the boolean space Z2 as an orthonormal basis in a vector space we can treat the RAM based neuron as a matrix (operator) acting on the vector space. We show how this model (inspired by our research on quantum neural networks) is of sufficient generality as to have classical weighted (perceptronlike), classical weightless (RAM-based, PLN, etc), quantum weighted and quantum weightless...
متن کاملWearable automatic feedback devices for physical activities
With this work we want to illustrate new ways to assist students during sports training and to enhance their learning experience. As an example, we present the design of a wearable system intended for snowboard training on the slope. The hardware platform consists of a custom-built sensor/actuator box and a mobile phone acting as host device. These devices run algorithms for activity, context, ...
متن کاملTridimensional Pattern Reconstruction by Using Weightless Artificial Neural Networks
1. ABSTRACT This paper describes the structure and behavior of a system, composed by a set of weightless artificial neural networks, which is capable of learning different images and then reconstructing an image according to the closest learned pattern. This paper presents a technique which considers Hamming distance for pattern learning and reconstruction, therefore it is posible to study the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Healthcare Technology Letters
سال: 2017
ISSN: 2053-3713,2053-3713
DOI: 10.1049/htl.2017.0003